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Abstract

This thesis explores the power of interactivity in unsupervised machine learning
problems. Interactive algorithms employ feedback-driven measurements to reduce
data acquisition costs and consequently enable statistical analysis in otherwise in-
tractable settings. Unsupervised learning methods are fundamental tools across a
variety of domains, and interactive procedures promise to broaden the scope of sta-
tistical analysis. We develop interactive learning algorithms for three unsupervised
problems: subspace learning, clustering, and tree metric learning. Our theoretical
and empirical analysis shows that interactivity can bring both statistical and com-
putational improvements over non-interactive approaches. An over-arching thread
of this thesis is that interactive learning is particularly powerful for non-uniform
datasets, where non-uniformity is quantified differently in each setting.

We first study the subspace learning problem, where the goal is to recover or
approximate the principal subspace of a collection of partially observed data points.
We propose statistically and computationally appealing interactive algorithms for
both the matrix completion problem, where the data points lie on a low dimensional
subspace, and the matrix approximation problem, where one must approximate the
principal components of a collection of points. We measure uniformity with the
notion of incoherence, and we show that our feedback-driven algorithms perform
well under much milder incoherence assumptions.

We next consider clustering a dataset represented by a partially observed simi-
larity matrix. We propose an interactive procedure for recovering a clustering from a
small number of carefully selected similarity measurements. The algorithm exploits
non-uniformity of cluster size, using few measurements to recover larger clusters and
focusing measurements on the smaller structures. In addition to coming with strong
statistical and computational guarantees, this algorithm performs well in practice.

We also consider a specific metric learning problem, where we compute a latent
tree metric to approximate distances over a point set. This problem is motivated by
applications in network tomography, where the goal is to approximate the network
structure using only measurements between pairs of end hosts. Our algorithms use
an interactively chosen subset of the pairwise distances to learn the latent tree metric
while being robust to either additive noise or a small number of arbitrarily corrupted
distances. As before, we leverage non-uniformity inherent in the tree metric structure
to achieve low sample complexity.

Finally, we study a classical hypothesis testing problem where we focus on show
fundamental limits for non-interactive approaches. Our main result is a precise char-
acterization of the performance of non-interactive approaches, which shows that, on
particular problems, all non-interactive approaches are statistically weaker than a
simple interactive one. These results bolster the theme that interactivity can bring
about statistical improvements in unsupervised problems.
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Chapter 1

Introduction

Interactive learning is a framework for statistical analysis in which the inference procedure inter-
acts with the data acquisition mechanism to make feedback-driven measurements. This frame-
work, which is also referred to as active learning, adaptive sampling, or adaptive sensing, has
become increasing popular in recent years as it often significantly reduces overhead associated
with data collection. On both theoretical and empirical fronts, interactive learning has been suc-
cessfully applied to a variety of supervised machine learning [19, 21, 22, 23, 29, 30, 64, 65,

, , , ] and signal processing problems [17, , , , ]. Howeyver, inter-
active approaches have not experienced the same degree of success for unsupervised learning,
and our understanding in this area is quite limited. This thesis addresses this deficiency with an
exploration of the power of interactive approaches for unsupervised learning.

Unsupervised learning refers to a broad class of learning problems where the dataset is not en-
dowed with label information and the explicit goal is to identify some structural characteristics
of the data. This contrasts with supervised problems where data points are associated with la-
bels, and the goal is to learn an accurate mapping from data points to their labels. Examples of
unsupervised learning range from clustering and manifold learning, where the goal is to capture
locality information, to hypothesis testing, where the goal is to understand the data-generating
process more generically. Unsupervised learning plays an important role in exploratory data
analysis, as it provides the statistician with some basic understanding of the dataset.

Unfortunately, unsupervised learning tasks, formulations, and algorithms are extremely varied,
making a unified treatment challenging. Our study of interactive approaches for unsupervised
learning therefore focuses on several important and representative examples rather than a general
treatment. Our choices of examples are motivated by two considerations: the learning problem
should be widely studied and practically relevant, and there should be concrete applications
where an interactive approach is feasible. Our experience is that ideas in the development of
these examples will be applicable in other unsupervised learning problems.

Through these examples, we show that interactive learning offers three distinct advantages. First,
interactive algorithms have lower sample requirements than non-interactive ones, and are there-



fore statistically more efficient. Secondly, interactive approaches are particularly powerful when
the data exhibits high degrees of non-uniformity, as the sampling mechanism can focus mea-
surements to accurately capture these aspects of the data. Lastly, interactivity offers a computa-
tional improvement as these algorithms are often both theoretically and empirically faster than
non-interactive ones. These claims are supported by the several examples in this thesis. More
formally, our thesis statement is:

Thesis statement: Interactive data acquisition facilitates statistically and computationally effi-
cient unsupervised learning algorithms that are particularly well-suited to handle non-uniform
datasets.

In the remainder of this chapter, we describe these three advantages in some more detail and then
turn to an overview of the main results. We conclude this chapter with a broad discussion of
related work on interactive learning.

1.1 Overarching Themes

In the context of unsupervised learning, we claim that interactive approaches offers three distinct
advantages over non-interactive ones. These are:

1. Statistical efficiency: The main appeal of interactive learning is statistical efficiency. Intu-
itively, by incorporating feedback into the measurement process, an interactive algorithm
should be able to achieve suitable statistical performance with fewer measurements than
a non-interactive one. Indeed, interactive learning is a strictly more powerful model, but
there are many documented examples where interactivity is known to not provide signifi-
cant statistical improvements over non-interactive approaches [ 1, 63, ]. In this thesis,
we study a number of unsupervised learning problems and show that interactivity in fact
does lead to significantly improved statistical performance.

In the machine learning community, statistical efficiency is usually quantified by sample
complexity, which is the number of samples required to achieve a certain accuracy in a
learning task. In the signal processing literature, a signal-to-noise ratio, which measures
the problem difficulty, is more commonly used. We use both notions in this thesis, depend-
ing on the problem of study, but make fair comparisons to other approaches throughout.

2. Computational efficiency: Given the increasing size and complexity of data sets, com-
putational efficiency is an important consideration when designing learning algorithms. In
addition to statistical efficiency, we also argue that interactive approaches can be compu-
tationally more efficient than non-interactive ones, particularly in unsupervised settings.
This claim is challenging to argue theoretically, as it requires establishing a computational
lower bound on non-interactive algorithms, and proving such lower bounds is notoriously
hard. We instead compare our algorithms against non-interactive ones, both theoretically,
in their asymptotic running times, and empirically, via extensive simulation.

We find it surprising that interactive approaches actually lead to computational improve-

2



ments over non-interactive ones, as many algorithms for interactive supervised learning do
not demonstrate this phenomenon [20, , ]. One exception is the algorithm due to
Beygelzimer et al. [30], which is often faster than passive learning in practice, but reduces
active learning to a possibly NP-hard zero-one loss empirical risk minimization problem.
One reason for this is that these algorithms perform sophisticated computations to select
future measurements, while we find that, in the unsupervised problems considered here,
much simpler sampling techniques suffice. These simple sampling approaches, along with
the fact that interactive algorithms can ignore large fractions of the dataset, lead to the
computational improvements demonstrated in this thesis.

3. Coping with non-uniformity: Lastly, we find that interactive learning algorithms are
particularly well-suited to data sets with high degrees of non-uniformity. While non-
uniformity is quantified differently in each of the examples considered in this thesis, our
algorithms can quickly identify these non-uniformities and focus measurements to accu-
rately capture these aspects of the data. On the other hand, non-interactive approaches
have high sample complexities for these non-uniform problems, as one needs many mea-
surements in certain regions to achieve suitable accuracy. Formalizing this argument, we
show that interactive approaches have significantly better statistical performance than non-
interactive ones on these non-uniform problems.

1.2 Overview of Results

In this thesis we study four unsupervised learning problems and develop interactive learning
algorithms for these problems. The first three problems can all be formalized as matrix inference
problems; given feedback-driven access to the entries of a d xn matrix X which may be corrupted
with noise, we are interested in recovering some structural property of the matrix. We propose
interactive algorithms to recover three different structural properties and compare against non-
interactive approaches, ones that either observe the entire matrix or a subset of entries acquired
prior to any computation. In all three settings, we show that our interactive algorithms can
significantly outperform non-interactive ones, in line with the over-arching themes of this thesis.

1.2.1 Interactive Subspace Learning

In the subspace learning problem, the data matrix X corresponds to a collection of n points in
d dimensions, and the goal is to recover a subspace of R? that effectively captures the dataset.
When the data matrix is fully observed, it is well known that principal components analysis
(PCA) identifies a subspace that optimally approximates the data matrix [83]. In the missing
data setting that we consider here, this is referred to as the matrix completion or the matrix
approximation problem [43, 72, 75, 97, , ].

In Chapter 2, we study three versions of the subspace learning problem and propose novel al-
gorithms that employ interactive sampling to obtain strong performance guarantees. We first



consider the setting where the data points lie exactly on a r-dimensional subspace, which is re-
ferred to as the (noiseless) matrix completion problem. Our algorithm interactively identifies
entries that are highly informative for learning the column space of the matrix and, consequently,
it succeeds even when the row space is highly non-uniform (according to a standard definition of
non-uniformity), in contrast with non-interactive approaches. We show that one can exactly re-
cover a d x n matrix of rank r from merely Q((d 4 n)r log®(r)) matrix entries using an algorithm
with running time that is linear in the matrix size, max{d, n}, with a mild polynomial depen-
dence on the rank r. In addition to significantly relaxing uniformity assumptions, this algorithm
nearly matches the best known sample complexity and is the fastest known algorithm for matrix
completion.

We generalize this algorithm to the tensor completion problem, where the data is instead a low-
rank tensor. We show that a recursive application of our matrix completion algorithm recovers a
rank  order T tensor X € R®=1% using Q(r7~'T ST d;log?(r)) tensor entries, which is the
best known sample complexity for this problem [1 11, ]. As with the algorithm for the matrix
case, this algorithm relaxes uniformity assumptions and is extremely fast.

Lastly, we consider the problem of constructing a low rank approximation to a high-rank input
matrix from interactively sampled matrix entries. This is referred to as the matrix approxima-
tion problem. We propose a simple algorithm that truncates the singular value decomposition of
a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly
as good as the best rank-r approximation to the input matrix using O(nrplog®(n)) samples,
where £ is a uniformity parameter on the matrix columns. We eliminate uniformity assumptions
on the row space of the matrix while achieving similar statistical and computational performance
to non-interactive methods.

We demonstrate the statistical and computational efficiency of all three of these procedures with
extensive empirical evaluation. These results appear in the papers [121, 122].

1.2.2 Interactive Hierarchical Clustering

We consider a similarity-based clustering formulation where we are given an n X n symmetric
matrix X of pairwise similarities between n objects. In flat clustering problems the goal is
to identify a partitioning of the objects so that pairs of objects in the same group have high
similarity and pairs of objects in different groups have low similarity. In hierarchical clustering
problems, the goal is to identify this partitioning structure at multiple resolutions. We aim to
recover hierarchical cluster structures when the similarity matrix X is only partially observed.

In Chapter 3, we propose interactive learning algorithms for hierarchical clustering from partially
observed pairwise similarity information. Our algorithm runs spectral clustering on a subsampled
version of the similarity matrix to resolve the larger cluster structure and then focuses measure-
ments to resolve the finer partitions. We show that this algorithm recovers all clusters of size
Q(logn) using O(nlog?n) similarities and runs in O(n log® n) time for a dataset of n objects.
In comparison, hierarchical spectral clustering on the fully observed similarity matrix achieves
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the same resolution but uses all O(n?) similarities and runs in O(n?) time [16]. This algorithm
is most effective when trying to recover both the large clusters at the top of the hierarchy and the
small clusters at the bottom of the hierarchy, or, in others words, when the cluster structure is
highly non-uniform.

We complement this algorithmic result with an information-theoretic study of the hierarchical
clustering problem. The most important result in this study is a necessary condition for any non-
interactive algorithm to recover a hierarchical clustering. Comparing this necessary condition
with the sufficient condition developed by our interactive algorithm, we mathematically certify
the statistical advantage offered by interactivity.

We evaluate this algorithm with a detailed empirical study on simulated and real clustering data
sets. We compare with several popular clustering algorithms and show that our proposed algo-
rithm does lead to statistical and/or computational improvements in many cases. This algorithm
and its analysis appear in the paper [123]. The information-theoretic study is new here.

1.2.3 Interactive Latent Tree Metric Learning

In metric learning problems, X € R"*" is a distance matrix between n points, so that the (7, j)th
entry is the distance between the ith and jth object. Broadly, the goal is to impute distances
between points, and this is typically done by embedding the points into some structured metric
space. In the instantiation of this problem that we study, we aim to recover a latent tree metric,
which associates each object to a leaf of some weighted tree and approximates distances between
objects via the distance along the tree. This problem is motivated by research in communication
networks showing that packet latencies can be well-approximated by latent tree metrics.

In Chapter 4, we present two algorithms that use interactively sampled pairwise distance mea-
surements to construct a latent tree whose path distances approximate those between the objects.
Our first algorithm accommodates measurements perturbed by additive noise, while our second
considers a novel noise model that captures missing measurements and the datasets deviations
from a tree topology. Both algorithms provably use O(n polylog n) pairwise measurements to
construct a tree approximation on n end hosts and run in nearly linear time. We present simulated
and real-world experiments to evaluate both algorithms. These results appear in the paper [120].

1.2.4 Passive and Interactive Sampling in Normal Means Inference

The last problem we consider does not fall into the matrix inference framework. We study a
structured hypothesis testing problem where the goal is to use data generated from a gaussian
distribution to identify which vector, out of a finite collection, is the mean vector. We consider
algorithms that are given a sensing budget and asked to allocate measurements across the coor-
dinates, where interactive algorithms can make this allocation in a feedback-driven manner.
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Our focus is on understanding how structural assumptions about the collection of mean vec-
tors affects statistical performance, and most of the results pertain to non-interactive approaches.
Specifically, for any non-interactive allocation strategy, we give necessary and sufficient con-
ditions under which the identification of the mean vector is possible. We show through many
concrete examples, that this analysis leads to optimal non-interactive allocation strategies and
inference procedures. We also give a concrete example where a simple interactive procedure
significantly outperforms all non-interactive ones.

In this chapter, we also initiate a deeper investigation into the design of optimal estimators. In
this direction, we give a sufficient condition, which depends on the structure of the collection of
vectors, for the exact optimality of the maximum likelihood estimator. We also design a heuristic
algorithm for improving on the maximum likelihood estimator in the cases when it is suboptimal.
We provide synthetic examples demonstrating the importance of this improvement.

1.3 Related Work

In this section we provide a broad summary of related work on interactive learning. Research
on interactive learning is extremely diverse, in part due to the intuitive appeal of the learning
paradigm, and we cannot hope to cover all of the work here. Instead we focus attention on the
theoretical results.

We categorize the research based on types of learning problems addressed:

1. Classification and Regression: When focusing on classification or regression problems,
interactive approaches are typically referred to as active learning [57]. In active learning,
the learner interacts with the dataset by querying for the response or label of data points.
There are three ways of realizing this interaction: pool-based [62], where the learner has
access to a large number of unlabeled examples; stream-based [57, 91], where unlabeled
examples are fed one-by-one to the learner and it decides to query for a label; and query
synthesis [ 3, 9], where the learner can construct examples to be labeled. Most of the recent
attention has focused on either pool-based or stream-based active learning, as the third
model is fairly unnatural.

The literature on active learning alone is quite vast, but can roughly be categorized along
several axes. In the context of binary classification, researchers have considered hypothesis

classes ranging from linear separators through the origin [20, 66, 91] to classes of bounded
Vapnik-Chervonenkis dimension [30, ]. The choice of noise model also plays a role,
with choices ranging from noise-free or realizable [62, 63, 66, 91] to parameterized noise
models [44, ], to the most general agnostic case [22, 30, ]. Lastly apart from these

works, there is a sequence of papers on bayesian active learning where a prior distribu-
tion is placed on the true hypothesis, and query decisions are made through computations
involving the posterior [90, ].

We refer the reader to Hanneke’s comprehensive treatment of the theoretical issues in ac-

6



tive learning [ 1 05]. For a more applied perspective, many algorithmic techniques for active
learning are outlined in the survey by Settles [ 153].

. Sequential Decision Making: In this class of problems, a learner makes a series of ac-
tions, possibly based on situational context, and receives reward based on the quality of
the choices made, possibly depending on context. The goal broadly is to obtain large re-
wards, which amounts to learning how to choose high-quality actions. These problems fall
into the interactive learning framework because the actions that a learner makes influence
the reward feedback provided, and also possibly influence the future situations. There-
fore a learner must tradeoff between choosing actions that provide information about the
environment and those that provide large rewards.

The simplest version of the sequential decision making problem is the multi-arm bandit
problem. In this problem, there are a fixed set of actions and no situational context, so the
goal reduces to identifying the best fixed action. An excellent survey of results in this line
of research is provided by Bubeck and Cesa-Bianchi [35].

Incorporating situational information into the multi-arm bandit framework yields the con-
textual bandit problem. Here the goal now amounts to finding a policy that maps contexts
into actions while achieving high levels of reward. A number of recent algorithms address
both parametrized [55, 89, ], where the reward for an action can be reliable predicted
based on some features, and agnostic [4, 13, 31, 78, ], where no features are available,
versions of this problem.

Lastly, the most challenging version of the sequential decision making problem is rein-
forcement learning, where the actions of the learner affect not only the reward and feed-
back, but also the future situation or context. In some models for this problem, we know
of algorithms that achieve nearly optimal statistical performance [!4]. An overview of the
main techniques for reinforcement learning problems is provided by Sutton and Barto [26].

. Unsupervised Learning There are also a plethora of results on interactive learning for
unsupervised problems. The majority of these results stem from the statistics and signal
processing communities and focus on various forms of hypothesis testing problems. Some
more recent results from the machine learning community address more classical unsuper-
vised problems such as clustering and subspace learning.

In the statistics literature, interactive learning is typically referred to as sequential exper-
imental design and includes the seminal works of Wald [169], Chernoff [53], and Rob-
bins [146]. The techniques are strikingly similar to those for the multi-arm bandit problem,
and indeed both lines of research stem from the initial works of Robbins and Lai [125].

In the signal processing community, interactive learning is typically referred to as adaptive
sensing, and the typical goal is multiple hypothesis testing from repeated direct or com-
pressive measurements. When individual hypothesis can be queried, the distilled sensing
algorithm [ 107] is known to outperform non-adaptive sampling schemes, and this work has
been extended to some structured settings [161]. When compressive measurements can be
taken, results under specific structural constraints are known [17, ], and unstructured
lower bounds show that significant performance improvements over non-adaptive proce-
dures are not possible [11].



Interactive approaches have also been considered for more classical unsupervised learn-
ing problems, with most of the focus on clustering and kernel learning. A number of
algorithms have been proposed for interactive clustering both in hierarchical and flat set-
tings [15, 18, 27, 87], although many of these approaches consider interactive supervision
in the from of constraints on the clustering rather than interactivity with object features or
similarities as we do. The advent of crowdsourcing platforms has also lead to research on
learning via interaction with crowds of workers [160]. Lastly, interactive learning is the de
facto standard for problems in network tomography, including topology identification [84],
topology-aware clustering [56], and other tasks [45].



Chapter 2

Interactive Matrix Completion

In this chapter, we develop interactive algorithms for low rank matrix and tensor completion and
matrix approximation. In the completion problem, we would like to exactly recover a low rank
matrix (or tensor) after observing only a small fraction of its entries. In the approximation prob-
lem, rather than exact recovery, we aim to find a low rank matrix that approximates, in a precise
sense, the input matrix, which need not be low rank. In both problems, we are only allowed to
observe a small number of matrix entries, although these entries can be chosen sequentially and
in a feedback-driven manner.

The measure of uniformity in this chapter is the notion of incoherence which pervades the ma-
trix completion literature. We show that interactive sampling allows us to significantly relax the
incoherence assumption. Previous analyses show that if the energy of the matrix is spread out
fairly uniformly across its coordinates, then uniform-at-random samples suffice for completion or
approximation. In contrast, our work shows that interactive sampling algorithms can focus mea-
surements appropriately to solve these problems even if the energy is non-uniformly distributed.
Handling non-uniformity is essential in a variety of problems involving outliers, for example
network monitoring problems with anomalous hosts, or recommendation problems with popular
items. This is a setting where non-interactive algorithms fail, as we will show.

We make the following contributions:

1. For the matrix completion problem, we give a simple algorithm that exactly recovers an
nxn rank 7 matrix using at most O (nr o log®(r)) measurements where /i is the coherence
parameter on the column space of the matrix (Corollary 2.2). This algorithm outperforms
all existing results on matrix completion both in terms of sample complexity and in the fact
that we place no assumptions on the row space of the matrix. The algorithm is extremely
simple, runs in O(nrz) time, and can be implemented in one pass over the matrix.

2. We derive a lower bound showing that in the absence of row-space incoherence, any non-
interactive scheme must see 2(n?) entries (Theorem 2.3). This concretely demonstrates
the power of interactivity in the matrix completion problem.
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3. For the tensor completion problem, we show that a recursive application of our matrix com-
pletion algorithm can recover an order-T, n x . . . x n tensor using O(nT?r" 'l ~* log? r)
interactively-obtained samples (Theorem 2.1). This algorithm significantly outperforms
all existing results on tensor completion and as above, is quite simple.

4. We complement this with a necessary condition for tensor completion under random sam-
pling, showing that our interactive strategy is competitive with any approach based on
uniform sampling (Theorem 2.4). This is the first sample complexity lower bound for ten-
sor completion, although it is weaker than the lower bound for the matrix completion case
in Corollary 2.2.

5. For matrix approximation, we analyze an algorithm that, after an interactive sampling
phase, approximates the input matrix by the top r ranks of an appropriately rescaled zero-
filled version of the matrix. We show that with just O(nrulog®(n)) samples, this approx-
imation is competitive with the best rank r approximation of the matrix (Theorem 2.5).
Here ;1 is a coherence parameter on each column of the matrix; as before we make no
assumptions about the row space of the input. Again, this result significantly outperforms
existing results on matrix approximation from non-interactively collected samples.

This chapter is organized as follows: we conclude this introduction with some basic definitions
and then turn to related work in Section 2.1. The main results for the exact completion problems
are given in Section 2.2 while our matrix approximation algorithm and analysis are in Section 2.3
Proofs are provided in Section 2.4 and we provide some simulation that validate our theoretical
results in Section 2.5. We conclude the chapter in Section 2.6.

2.0.1 Preliminaries

In this chapter, we are interested in recovering, or approximating, a d X n matrix X given a budget
of M observations, where we assume d < n. We denote the columns of X by zy,...,z, € R?
and use t to index the columns. We use (%) to denote the ith coordinate of the column z;.

We use capital letters to denote subspaces and we overload notation by using the same symbol
to refer to a subspace and any orthonormal basis for that subspace. Specifically, if U C R? is
a subspace with dimension r, we may use U to refer to a d x r matrix whose columns are an
orthonormal basis for that subspace. We use U+ to denote the orthogonal complement to the
subspace U and Py to refer to the orthogonal projection operator onto U.

As we are dealing with missing data and sampling, we also need some notation for subsampling
operations. Let [d] denote the set {1,...,d} and let {2 be a list of m values from [d], possibly
with duplicates (One can think of € as a vector in [d]™ and (j) is the jth coordinate of this
vector). Given such a list €2, we use two different subsampling operations: xq € R™ is the vector
formed putting x(7) in the jth coordinate if Q2(j) = ¢ and Rqx is a zero-filled rescaled version
of x with Roz(i) = 0if i ¢ Q and Rz (i) = dx(i)/|Q] if ¢ € Q.

For a r-dimensional subspace U C R%, Uy € R™*" is a matrix formed by doing a similar
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subsampling operation to the rows of any orthonormal basis for the subspace U, e.g. the jth row
of Ug is the ith row of U if {2(j) = i. Note that Uy, and even the span of the columns of Ug,
may not be uniquely defined, as they both depend on the choice of basis for U. Nevertheless, we
will use Py, to denote the projection onto the span of any single set of columns constructed by
this subsampling operation.

These definitions extend to the tensor setting with slight modifications. Let X € R™>-*"T
denote an order 7' tensor with canonical decomposition:

X=Y a’®a’®.. @a" 2.1)
k=1

where ® is the outer product. Define rank(X) to be the smallest value of r that establishes this
equality. Note that the vectors {a,(:) }7_, need not be orthogonal, nor even linearly independent.

We then use the vec operation to unfold a tensor into a vector and define the inner product
(x,y) = vec(x)Tvec(y). For a subspace U C R®", we write it as a ([ n;) X d matrix whose
columns are vec(u;), u; € U. We then define projections and subsampling as in the vector case.

We will frequently work with the truncated singular value decomposition (SVD) of X which is
given by zero-ing out its smaller singular values. Specifically, write X = U, %, VI +U_. 3% VI
where [U,., U_,] (respectively [V, V_,]) forms an orthonormal matrix and ¥, = diag(oy, ..., 0,),
Y, = diag(o,41, .. .,04) are diagonal matrices with oy > ... > 0, > 0,41 > ... > 04. The
truncated singular value decomposition is X, = U, X, V.7, which is the best rank-r approximation
to X both in Frobenius and spectral norm [33].

In the matrix completion problem, where we aim for exact recovery, we require that X has rank
at most r, meaning that 0,1 = ... = 0, = 0. Thus X = X,, and our goal is to recover X,
exactly from a subset of entries. Specifically, we focus on the 0/1 loss; given an estimator X for
X, we would like to bound the probability of error:

Ry (X) éP(f(;éX). 2.2)

In the approximation problem, we relax the low rank assumption but are only interested in ap-
proximating the action of X,.. The goal is to find a rank » matrix X that minimizes:

R(X) = ||X - X|p.

The matrix X, is the global minimizer (subject to the rank-r constraint), and our task is to ap-
proximate this low rank matrix effectively. Specifically, we will be interested in finding matrices
X that satisfy excess risk bounds of the form:

R(X)2|X = X|lr < [IX = Xo|[p + €| X r (2.3)

Rescaling the excess risk term by || X || is a form of normalization that has been used before in
the matrix approximation literature [75, 76, 92, 149]. While bounds of the form (1+¢)[| X — X, ||r
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may seem more appropriate when the bottom ranks are viewed as noise term, achieving such a
bound seems to require highly accurate approximations of the SVD of the input matrix [77],
which is not possible given the extremely limited number of observations in our setting. Equa-
tion 2.3 can be interpreted by dividing by || X ||z, which shows that X captures almost as large a
fraction of the energy of X as X, does.

Apart from the observation budget M and the approximation rank r, the other main quantity gov-
erning the difficulty of these problems is the subspace coherence parameter. For a  dimensional

subspace U of R?, define
d

2
wU) =~ max [Pueill3,

which is a standard measure of subspace coherence [144]). The quantity zo = u(U,), which
is bounded between 1 and d/r, measures the correlation between the column space U, and any
standard basis element. When this correlation is small, the energy of the matrix is spread out
fairly uniformly across the rows of the matrix, although it can be non-uniformly distributed
across the columns. We use the column-space coherence 1 instead of the row-space analog, and
we will see that the parameter 11y controls the sample complexity of our procedure.

Such an incoherence assumption does not translate appropriately to the approximate recovery
problem, since the matrix is no longer low rank, but some measure of uniformity is still necessary.
We parameterize the problem by a quantity related to the usual definition of incoherence:
d||z¢|)?
= el

el [l I3
which is the maximal column coherence. Here, we make no stochastic assumptions, but notice
that this is a restriction on the higher ranks of the matrix. We also make no assumptions about
the row space of the matrix'.

2.1 Related Work

The literature on low rank matrix completion and approximation is extremely vast and we do not
attempt to cover all of the existing ideas. Instead, we focus on the most relevant lines of work to
our specific problems. We briefly mention some related work on adaptive sensing.

2.1.1 Related work on Matrix and Tensor Completion

Due to its widespread applicability, the matrix completion problem has received considerable
attention in recent years. A series of papers [42, 43, 50, 97, 144] establish that Q(n7ru log?(n))
randomly drawn samples are sufficient for the nuclear norm minimization program to exactly

! As before this could equivalently be the column space with assumption on the maximal row coherence.

12



identify an n x n matrix with rank r. Here y{, = max{u(U,), u(V;)} is the coherence parameter,
which measures the uniformity of both the row and column spaces of the matrix. Candes and
Tao [43] show that nuclear norm minimization is essentially optimal with a (nrug log(n)) lower
bound for uniform-at-random sampling. In contrast, the guarantee for our interactive procedure
scales linearly on g = p(U,), so our algorithm succeeds even when the row space is highly
coherent. This is a regime where non-interactive provably fail, as we will show.

There is also a line of work analyzing alternating minimization-style procedures for the matrix
completion problem [106, , ]. While the alternating minimization algorithm is a more
elegant computational approach, the best sample complexity bounds to-date are either worse by
at least a cubic factor in the rank 7 or have undesirable dependence on the matrix condition
number [ 16]. In practice however, alternating minimization performs as well as nuclear norm
minimization, so this sub-optimality appears to be an artifact of the analysis.

In a similar spirit to our work, Chen et al. [52] developed an interactive algorithm which suc-
ceeds in the absence of row-space incoherence using 2(nrpglog®(n)) samples. In compar-
ison, we operate under the same assumption but achieve an improved sample complexity of
Q(nrpolog?(r)). A recent paper of Jin and Zhu [113] further improves slightly on this bound,
achieving Q(nrlog(r)) sample complexity, but they assume that both the row and column space
are incoherent. Interestingly, their algorithm uses non-interactive but non-uniform sampling.

Tensor completion, a natural generalization of matrix completion, is less studied than the ma-
trix case. One challenge stems from the NP-hardness of computing most tensor decomposi-
tions, pushing researchers to study alternative structure-inducing norms in lieu of the nuclear
norm [93, , , , , ]. Of these, only Mu et al. [132] and Yuan and Zhang [173]
provide sample complexity bounds for the noiseless setting. Mu et al. [132] show that Q(rn’/2)
random linear measurements suffice to recover a rank r order-7" tensor. Yuan and Zhang [173]
instead show that (r'/2n3/2) entries suffice to recover a rank r third-order tensor with incoher-
ent subspaces, provided the rank is small. In contrast, the sample complexity of our algorithm is
linear in dimension n, improving significantly on these non-interactive results.

2.1.2 Related work on Matrix Approximation

A number of authors have studied matrix completion with noise and under weaker assumptions.
The most prominent difference between our work and all of these is a relaxation of the main
incoherence assumptions. Both Candes and Plan [41], and Keshavan et al. [117] require that
both the row and column space of the matrix of interest is highly incoherent. Negahban and
Wainwright [134] instead use a notion of spikiness, but that too places assumptions on the row
space of interest. Koltchinskii et al. [119] consider matrices with bounded entries, which is
related to the spikiness assumption. In comparison, our results make essentially no assumptions
about the row space, leading to substantially more generality. This is the thesis of this work;
one can eliminate row space assumptions (uniformity assumptions) in matrix recovery problems
through interactive sampling.
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Another close line of work is on matrix sparsification [!, 2, 12]. Here, the goal is to zero out
many entries of a matrix while preserving global properties such as the principal subspace. The
main difference from matrix completion is that the entire matrix is observed, which allows one
to relax incoherence assumptions. The only result from this line that does not require knowledge
of the matrix is a random sampling scheme of Achlioptas and McSherry [ 1], but it is only com-
petitive with matrix completion when the input has entries of fairly constant magnitude [ 19].
Interestingly, this requirement is essentially the same as the spikiness assumption [134] and the
bounded magnitude assumption [ 19] in the matrix completion literature.

Several techniques have been proposed for matrix approximation in the fully observed setting,
optimizing computational complexity or other objectives. A particularly relevant series of papers
is on the column subset selection (CSS) problem, where the span of several judiciously chosen
columns is used to approximate the principal subspace. One of the best approaches involves
sampling columns according to the statistical leverage scores, which are the norms of the rows
of the n x r matrix formed by the top 7 right singular vectors [36, 37, 77]. Unfortunately, this
strategy does not seem to apply in the missing data setting, as the distribution used to sample
columns — which are subsequently used to approximate the matrix — depends on the unobserved
input matrix. Approximating this distribution seems to require a very accurate estimate of the
matrix itself, and this initial estimate would suffice for the matrix approximation problem. This
difficulty also arises with volume sampling [ 1 00], another popular approach to CSS; the sampling
distribution depends on the input matrix and we are not aware of strategies for approximating this
distribution in the missing data setting.

In terms of interactive sampling, a number of methods for recovery of sparse, structured, signals
have been shown to outperform non-interactive methods [17, , , , ]. While having
their share of differences, these methods can all be viewed as either binary search or local search
methods, that iteratively discard irrelevant coordinates and focus measurements on the remainder.
In particular, these methods rely heavily on the sparsity and structure of the input signal, and
extensions to other settings have been elusive. While a low rank matrix is sparse in its eigenbasis,
the search-style techniques from the signal processing community do not seem to leverage this
structure effectively and these approaches do not appear to be applicable to our setting.

Some of these interactive sampling efforts focus specifically on recovering or approximating
highly structured matrices, which is closely related to our setting. Tanczos and Castro [161] and
Balakrishnan er al. [17] consider variants of biclustering, which is equivalent to recovering a
rank-one binary matrix from noisy observations. Singh et al. [158] recover noisy ultrametric ma-
trices while in Chapter 3, we use a similar idea to find hierarchical clustering from interactively
sampled similarities. All of these results can be viewed as matrix completion or approximation,
but impose significantly more structure on the target matrix than we do here. For this reason,
many of these algorithmic ideas also do not appear to be useful in our setting.
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Algorithm 1 Interactive Matrix Completion (X € R¥" m)
1. LetU = 0.

2. Randomly draw entries €2 C [d] of size m uniformly with replacement.
3. For each column z; of X (¢ € [N]):
(a) If ||z — Py, w03 > 0:

i. Fully observe z; and add to U (orthogonalize 0).
ii. Randomly draw a new set {2 of size m uniformly with replacement.
(b) Otherwise &, «+ U(ULUq) 'Ugzyq.

4. Return X with columns Ty.

2.2 Matrix and Tensor Completion

In this section we develop the main theoretical guarantees on the exact low-rank completion
problems. We first develop our interactive algorithm for matrices and tensors and state their
main performance guarantee. We then turn to several necessary conditions for these problems.

Our procedure for the matrix case, whose pseudocode is displayed in Algorithm 1, streams the
columns of the matrix X into memory and iteratively adds directions to an estimate for the
column space of X. The algorithm maintains a subspace U and, when processing the ¢th column
x, estimates the norm of Py x; using only a few entries of z;. We will ensure that, with high
probability, this estimate will be non-zero if and only if x; contains a new direction. If the
estimate is non-zero, the algorithm asks for the remaining entries of x; and adds the new direction
to the subspace U. Otherwise, x; lies in U and we will see that the algorithm already has sufficient
information to complete the column z;.

Therefore, the key ingredient of the algorithm is the estimator for the projection onto the or-
thogonal complement of the subspace U. This quantity is estimated as follows. Using a list of
m locations €2 sampled uniformly with replacement from [d], we down-sample both z; and an
orthonormal basis U to zq and Ug. We then use ||z — Py, 2i0l|? as our estimate. It is easy to
see that this estimator leads to a test with one-sided error, since the estimator is exactly zero if
2y € U. In our analysis, we establish a relative-error deviation bound, which allows us to apply
this test in our algorithm.

A subtle but critical aspect of the algorithm is the choice of (). The list {2 always has m elements,
and each element is sampled uniformly with replacement from [d]. More importantly, we only
resample €2 when we add a direction to U. This ensures that the algorithm does not employ too
much randomness, which would lead to an undesirable logarithmic dependence on n.

For tensors, the algorithm becomes recursive in nature. At the outer level of the recursion, the
algorithm maintains a candidate subspace U/ for the mode 7' subtensors XET). For each of these

subtensors, we test whether XZ(-T) lives in U and recursively complete that subtensor if it does
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Algorithm 2 Interactive Tensor Completion (X, {m,}7}")

1. If X is just a vector, sample X entirely and return it.
2. LetU = 0.

3. Randomly draw entries €2 C HtT:f [n¢] uniformly with replacement w. p. mq_;/ Hthfll Ng.
4. For each mode-T" subtensor XZ(»T) of X, i € [ng]:
@ If|Xig — PuX QI3 > 0:
i. X recurse on (X7, {m )}
P X
1P, X711
oo XD T7/ -1 (T)
(b) Otherwise X;"’ «— U (UyUq) UX

5. Return X with mode-T" subtensors Xi(T).

. U; « U+—uuu;.

not. Once we complete the subtensor, we add it to U/ and proceed at the outer level. When the
subtensor itself is just a column, we observe the columns in its entirety.

Turning to the performance guarantees for these algorithms, we first bound the probability of
error for the tensor completion algorithm (Algorithm 2). The guarantee for Algorithm 1 is just a
specialization of this result to the order-two case. The following result is based on an analysis of
the test statistic and the reconstruction procedure in Algorithm 2. See Section 2.4 for the proof.

Theorem 2.1. Let X = ' | ®tT:1a§t) be a rank r order-T tensor with subspaces A =
span({ag-t)};;l). Suppose that all of AV, ... AT=Y have coherence bounded above by ji,. For
any § € (0,1), Algorithm 2 has Rol(X) < J provided that we set:

my > 3277yl log? (10rT/6). (2.4)

With this choice, the total number of samples used is:

T
32(2 n)r’ tpud T T log(10rT/6). (2.5)

t=1

The running time of the algorithm is:

T—1 T
O (r2 (H nt> +rTy ng Tr“T) : (2.6)
t=1 t=1
when we treat |y as a constant and ignore logarithmic factors.

In the special case of an x ... X n tensor of order 7', the algorithm succeeds with probability
at least 1 — § using Q(nr™='2ul='T?log(Tr/§)) samples, exhibiting a linear dependence on
the tensor dimensions. In comparison, all guarantees for tensor completion we are aware of
have super-linear dependence on the tensor dimension n [132, 173]. To our knowledge, the best
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known sample complexity is O(r'/?n?/?) for exact recovery of a n x n x n third-order tensor
of rank r [173]. An alternating minimization procedure is known to achieve O(r°n3/?) sample
complexity for this problem [111].

In the noiseless scenario, one can unfold the tensor into a n; X ]_[tT:2 n; matrix and apply any
matrix completion algorithm. Unfortunately, without exploiting the additional tensor structure,
this approach will scale with HZ;Q n:, which is similarly much worse than our guarantee. Note
that the naive procedure that does not perform the recursive step has sample complexity scaling
with the product of the dimensions and is therefore much worse than the our algorithm.

The most obvious specialization of Theorem 2.1 is to the matrix completion problem. Pseu-
docode for this algorithm is provided in Algorithm 1

Corollary 2.2. Let X € R¥™ have rank r and column space U with coherence p(U) < po.
Then for any § € (0, 1), the output of Algorithm 2 has risk R01(X) < 0 provided that:

m > 32rpuglog?(10r%/9). 2.7
The sample complexity is dr + nm and the running time is O(nmr + r3m + dr?).

To the best of our knowledge, this result provides the strongest guarantee for the matrix comple-
tion problem. The vast majority of results require both incoherent row and column spaces and
are therefore considerably more restrictive than ours [42, 43, 50, 97, ]. For example, Recht
shows that by solving the nuclear norm minimization program, one can recover X exactly, pro-
vided that the number of measurements exceeds 32(d + n)r max{uj, 2} log?(n) where recall
that 1, upper bounds the coherence of both the row an d column space, and y; provides another
incoherence-type assumption (which can be removed [50]). Our result improves on his not only
in relaxing the row space incoherence assumption, but also in terms of sample complexity, as we
remove the logarithmic dependence on problem dimension.

As another example, Gittens [95] showed that Nystrom method can recover a rank r matrix
from randomly sampling O(r logr) columns. While his result matches ours in terms of sample
complexity, he analyzes positive-semidefinite matrices with incoherent principal subspace, which
translates to assuming that both row and column spaces are incoherent. Again, in relaxing this
assumption, our result is substantially more general.

We mention that the two-phase algorithm of Chen et al. [52] based on local coherence sampling
allows for coherent row spaces. Their algorithm requires O((n + d)rp log(n)) samples which is
weaker than our guarantee in that it has a slightly super-linear dependence on problem dimension.
An interesting consequence of Corollary 2.2 is that the amortized number of samples per column
is completely independent of the problem dimension.

Regarding computational considerations, the algorithm operates in one pass over the columns,
and need only store the matrix in condensed form, which requires O((n+d)r) space. Specifically,
the algorithm maintains a (partial) basis for column space and the coefficients for representing
each column by that basis, which leads to an optimally condensed representation. Moreover,
the computational complexity of the algorithm is /inear in the matrix dimensions d, n with mild
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polynomial dependence on the rank r. For this run-time analysis, we work in a computational
model where accessing any entry of the matrix is a constant-time operation, which allows us to
circumvent the 2(dn) time it would otherwise take to read the input. In comparison, the two stan-
dard algorithms for matrix completion, the iterative Singular Value Thresholding Algorithm [40]
and alternating least-squares [ 106, ], are significantly slower than Algorithm 2, not only due
to their iterative nature, but also in per-iteration running time.

2.2.1 Necessary conditions for non-interactive sampling

In this section we prove a number of lower bounds for matrix and tensor completion for non-
interactive sampling procedures. Note that a parameter counting argument shows that interactive
sampling requires 2(r Y ;" n;) samples. Each entry of a rank r tensor can be expressed as a
polynomial of the vectors in the canonical decomposition, so the observations lead to a polyno-
mial system in 7 Zthl ng variables. If M < r ZtT:1 ng — T(g) (there are T(;) orthonormality
constraints), then this system is underdetermined, and since it has one solution, it must have
infinitely many, so that recovery is impossible. Our algorithm matches this lower bound in its
dependence on the tensor dimensions, but is polynomially worse in terms of the rank . How-
ever for the matrix case, Corollary 2.2 shows that our matrix completion algorithm is nearly
optimal, disagreeing only in its dependence on the column incoherence parameter and logarith-
mic factors. In this section we will show that non-interactive sampling has much more stringent
necessary conditions.

Our first result is a necessary condition against non-interactive sampling for the matrix comple-
tion problem when the row space is highly coherent. We show that if the matrix has coherent
row space, then any non-interactive scheme followed by any recovery procedure requires €2(dn)
samples to recover a d X n matrix X.

To formalize our lower bound we fix a sampling budget M and consider an estimator to be a
sampling distribution q over {(i,j)|i € [d],j € [n]}* and a (possibly randomized) function
I {(Q, Xq)} — R that maps a set of indices and values to a d x n matrix. Let Q(M ) denote
the set of all such sampling distributions and let F denote the set of all such estimators. Lastly
let X (d, n,r, ) denote the set of all d x n rank r matrices with column incoherence at most .
We consider the minimax probability of error:

R*(d,n,r, po, M) = inf inf sup  Poo, [f(Q, X # X]

FTEF q€Q(M) X e X (dn,r o)

where the probability also accounts for potential randomness in the estimator f. Note that
since we make no assumptions about the distribution ¢ other than excluding interactive distribu-
tions, this setup subsumes essentially all non-interactive sampling strategies including uniform-
at-random, deterministic, and distributions sampling entire columns. The one exception is the
Bernoulli sampling model, where each entry (¢, j) is observed with probability ¢;; independently
of all other entries, although we believe a similar lower bound holds there.
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The following theorem lower bounds success probability of any non-interactive strategy and
consequently gives a necessary condition on the sample complexity.
Theorem 2.3. The minimax risk R* satisfies:

1 M 1
R*(d M) > - — 2.8
( , T, Ty o, >_2 |7(1—%)d—‘ 2(77/—7")’ ( )
which approaches 1/2 whenever:
1 1
M=o ((dn —dr)(1+ — — —)) : (2.9)
THo Mo

As a concrete instantiation of the theorem, if j is bounded from below by any constant ¢ > 1
(which is possible whenever r < d/c), then the bound approaches 1/2 whenever M = o(d(n —
r)). Thus all non-interactive algorithms must have sample complexity that is quadratic in the
problem dimension. In contrast, Corollary 2.2 ensures that Algorithm 2 has nearly linear sample
complexity, which is a significant improvement over non-interactive algorithms.

The literature contains several other necessary conditions on the sample complexity for matrix
completion. A simple argument shows that without any form of incoherence, one requires 2(dn)
samples to recover even a rank one matrix that is non-zero in just one entry. This argument
also applies to interactive sampling strategies and shows that some measure of incoherence is
necessary. With both row and column incoherence, but under uniform sampling, Candes and
Tao [43] prove that Q(pynr log(n)) observations are necessary to recover a n X n matrix.

One can relax the incoherence assumption by non-uniform non-interactive sampling, although
the sampling distribution is matrix-specific as it depends on the local coherence structure [52].
Unfortunately, one cannot compute the appropriate sampling distribution, before taking any mea-
surements. Our result shows that in the absence of row-space incoherence, there is no universal
non-interactive sampling scheme that can achieve a non-trivial sample complexity. Thus interac-
tivity is necessary to relax the incoherence assumption in completion problems.

Turning to necessary conditions for tensor completion, we adapt the proof of Candes and Tao [43]
to this setting and establish the following lower bound for uniform sampling:
Theorem 2.4. Fix 1 < m,r < minyn; and jip > 1. Fix 0 < 0 < 1/2 and suppose that we do not

have the condition:
T—1,7-1
m o T nq
—1 1— >0 ] — 2.1
" ( HT ) - H;f=2 i e <25> 210

i=1 Tl

Then there exist infinitely many pairs of distinct ny X ... X ny order-T tensors X # X' of rank
r with coherence parameter < iy such that Po(X) = Pq(X') with probability at least §. Each
entry is observed independently with probability p = =™

H"T—l i’
Theorem 2.4 implies that as long as the right hand side of Equation 2.10 is at most € < 1, and:
m < nyr’ il log (Z—;) (1—¢/2) (2.11)
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Algorithm 3 Low Rank Approximation (X, mq, ms)

1. Pass 1: For each column, observe €); of size m; uniformly at random with replacement
. ~ _d 2 . r - A
and estimate ¢; = -|[x,q,[|5. Estimate f =}, ¢

2. Pass 2: Set X = 0 € Réxn,

(a) For each column z;, sample mo; = maoncés/ f observations €25 ; uniformly at random
with replacement.

(b) Update X = X + (Rq,,7)el .
3. Compute the SVD of X and output X which is formed by the top-r ranks of X.

then with probability at least § there are infinitely many matrices that agree on the observed
entries. The expected number of samples observed is m This gives a necessary condition on
the number of samples required for tensor completion. Comparing with Theorem 2.1 shows
that our procedure outperforms any non-interactive procedure in its dependence on the tensor
dimensions, as our bound do not include a log(n) factor. Note that our guarantee matches the
polynomial terms in this lower bound in its dependence on n, r, 1o, although the dependence on
the tensor order 7' is better here.

2.3 Matrix Approximation

For the matrix approximation problem, we propose an interactive sampling algorithm to obtain
a low-rank approximation to X. The algorithm (see Algorithm 3 for pseudocode) makes two
passes through the columns of the matrix. In the first pass, it subsamples each column uniformly
at random and estimates each column norm and the matrix Frobenius norm. In the second pass,
the algorithm samples additional observations from each column, and for each ¢, places the
rescaled zero-filled vector R, ,; into the th column of a new matrix X, which is a preliminary
estimate of the input, X. Once the initial estimate X is computed, the algorithm zeros out all but
the top r ranks of X to form X. We will show that X has low excess risk, when compared with
the best rank-r approximation, X,..

A crucial feature of the second pass is that the number of samples per column is proportional to
the squared norm of that column. Of course this sampling strategy is only possible if the column
norms are known, motivating the first pass of the algorithm, where we estimate precisely this
sampling distribution. This feature allows the algorithm to tolerate highly non-uniform column
norms, as it focuses measurements on high-energy columns, and leads to significantly better
approximation. This idea has been used before, although only in the exactly low-rank case [52].

For the main performance guarantee, we only assume that the matrix has incoherent columns,
that is d||z¢||% /||z¢||3 < p for each column ;. In particular we make no additional assumptions
about the high-rank structure of the matrix. We have the following theorem:
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Theorem 2.5. Set m; > 32ulog(n/d) and assume n > d and that X has ji-incoherent columns.
With probability > 1 — 26, Algorithm 3 computes an approximation X such that:

1/2
1X = Kl < 1X = Xolle + 1X1e 64/ 108 (22 4 (6, /7 10g (27
Mo ) Mo 0

using n(my + my) samples. In other words, the output X satisfies | X — X||p < | X — X,||r +
¢|| X || with probability > 1 — 2§ and with sample complexity:

D76 d
32nplog(n/o) + —nru log? ( }—n) : (2.12)
€
The proof is deferred to Section 2.4. The theorem shows that the matrix X serves as nearly as
good an approximation to X as X,.. Specifically, with O(nrlog?(d + n)) observations, one can
compute a suitable approximation to X. The running time of the algorithm is dominated by the
cost of computing the truncated SVD, which is at most O(d*n).

While the dependence between the number of samples and the problem parameters n,r, and
1 is quite mild and matches existing matrix completion results, the dependence on the error €
in Equation 2.12 seems undesirable. This dependence arises from our translation of a bound on
| X — X || into a bound on || X — X || -, which results in the m, '/4_dependence in the error bound.
We are not aware of better results in the general setting, but a number of tighter translations are
possible under various assumptions. We mention just two such results here.

Proposition 2.6. Under the same assumptions as Theorem 2.5, suppose further that X has rank
at most r. Then with probability > 1 — 20:

A r d+n
IX - Xle < 20|1X\|F,/—“10g( )
mo )

This proposition tempers the dependence on the error € from 1/€* to 1/€* in the event that the
input matrix has rank at most r. This gives a relative error guarantee for Algorithm 3 on the
matrix completion problem, which improves on the one implied by Theorem 2.5. Note that this
guarantee is weaker than Corollary 2.2, but Algorithm 3 is much more robust to relaxations of
the low rank assumption as demonstrated in Theorem 2.5.

A similarly mild dependence on € can be derived under the assumption that X = A + R, A
has rank r and R is some perturbation, which has the flavor of existing noisy matrix completion
results. Here, it is natural to recover the parameter A rather than the top r ranks of X and we
have the following parameter recovery guarantee for Algorithm 3:

Proposition 2.7. Let X = A + R where A has rank at most r. Suppose further that X has
p-incoherent columns and set my > 321log(n/6). Then with probability > 1 — 24:

A r d+mn
||X—A||Fszo,/£1og( : )<||A||F+||RQ||F>+@||R||2 2.13)

where the number of samples is n(my + my) and € is the set of all entries observed over the
course of the algorithm.
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To interpret this bound, let || A||z = 1, and let R be a random matrix whose entries are indepen-
dently drawn from a Gaussian distribution with variance 0% /(dn). Note that this normalization
for the variance is appropriate in the high-dimensional setting where n,d — oo, since we keep
the signal-to-noise ratio ||A||%/||R||% = 1/0? constant. The last term can be ignored, since by

the standard bound on the spectral norm of a Gaussian matrix, || R||s = O(a\/g log((n+d)/6))

which will be lower order [1]. We can also bound || Rq ||z < O(0y/ ™2 log((n+d)/d)) using
a Gaussian tail bound. With m; < my we arrive at:

1X = Alr <o (/22 400/ ) 10g? d+n :
mo d )

where ¢, is some positive constant. In the high dimensional setting, when . = 6(d), this shows
that Algorithm 3 consistently recovers A as long as my = @(ru). This second condition implies
that the total number of samples uses is w(nrpu).

2.3.1 Comparison with related results

The closest result to Theorem 2.5 is the result of Koltchinskii et al. [119] who consider a soft-
thresholding procedure and bound the approximation error in squared-Frobenius norm. They
assume that the matrix has bounded entry-wise /., norm and give an entry-wise squared-error
guarantee of the form:

. log(d
I = X3 < X — X, + e X2 2O

(2.14)
where M is the total number of samples and c is a constant. Their bound is quite similar to
ours in the relationship between the number of samples and the target rank . However, since
dn|| X ||%, > || X||%, their bound is significantly worse in the event that the energy of the matrix
is concentrated on a few columns.

To make this concrete, fix || X||z = 1 and let us compare the matrix where every entry is \/L(Tn

with the matrix where one column has all entries equal to \/La. In the former, the error term in
the squared-Frobenius error bound of Koltchinskii et al. is nr log(d + n)/M while our bound on
Frobenius error is, modulo logarithmic factors, the square root of this quantity. In this example,
the two results are essentially equivalent. For the second matrix, their bound deteriorates signifi-
cantly to n?r log(d+n)/M while our bound remains the same. Thus our algorithm is particularly
suited to handle matrices with non-uniform column norms.

Apart from interactive sampling, the difference between our procedure and the algorithm of
Koltchinskii et al. [119] is a matter of soft- versus hard-thresholding of the singular values of the
zero-filled matrix. In the setting of Proposition 2.7, soft thresholding seems more appropriate, as
the choice of regularization parameter allows one to trade off the amount of signal and noise cap-
tured in X. While in practice one could replace the hard thresholding step with soft thresholding
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in our algorithm, there are some caveats with the theoretical analysis. First, soft-thresholding
does not ensure that X will be at most rank r, so it is not suitable for the matrix approxima-
tion problem. Second, the resulting error guarantee depends on the sampling distribution, which
cannot be translated to the Frobenius norm unless the distribution is quite uniform [119, ].
Thus the soft-thresholding procedure does not give a Frobenius-norm error guarantee in the non-
uniform setting that we are most interested in.

The majority of other results on low rank matrix completion focus on parameter recovery rather
than approximation [4 1, , ]. It is therefore best to compare with Proposition 2.7, where
we show that Algorithm 3 consistently recovers the parameter, A. These results exhibit similar
dependence between the number of samples and the problem parameters 7, r, € but hold under
different notions of uniformity, such as spikiness, boundedness, or incoherence. Our result agrees
with these existing results but holds under a much weaker notion of uniformity.

Lastly, we emphasize the effect of interactive sampling in our bound. We do not need any
uniformity assumption over the columns of the input matrix X. All existing works on noisy low
rank matrix completion or matrix approximation from missing data have some assumption of
this form, be it incoherence [41, ], spikiness [134], or bounded /., norm [119]. The detailed
comparison with the result of Koltchinskii et al. gives a precise characterization of this effect
and shows that in the absence of such uniformity, our interactive sampling algorithm enjoys a
significantly lower sample complexity.

In the event of uniformity, our algorithm performs similarly to existing ones. Specifically, we
obtain the same relationship between the number of samples M, the dimensions 7, d and the
target rank 7. If we knew a priori that the matrix had uniform column lengths, we could omit the
first pass of the algorithm, sample uniformly in the second pass and avoid interactivity.

2.4 Proofs

In this section we provide detailed proofs of the results in this section. Some well known large-
deviation inequalities, that are used throughout this thesis, are stated in the appendix.

2.4.1 Proof of Theorem 2.1 and Corollary 2.2

Before turning to the proofs of Theorem 2.1 and Corollary 2.2, we prove several results involving
incoherence and the concentration of orthogonal projections under random subsampling.

Intermediary Results for Theorem 2.1 and Corollary 2.2

This first intermediary result shows that the test statistic used in Algorithm 2 concentrates sharply
around its mean. Specifically, this theorem analyzes the test based on the projection ||zg —
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Pu,zall3. The proof of this theorem uses various versions of Bernstein’s inequality, and im-
proves on the result of Balzano et al. [25]. It is the key ingredient to the analysis of these
algorithms.

Theorem 2.8. Let U be an r-dimensional subspace of R? and y = x + v where v € U and
v e Ut. Fix 6 > 0and m > max{3ru(U)log(2r/0),4pu(v)log(1/6)} and let Q be an index set
of m entries sampled uniformly with replacement from |d|. With probability > 1 — 49:

m(1l —a) —ru(U)
d

where oo = \/2% log(l/é)—i—zg—ﬁ;’)log(l/é),ﬂ = (1+2log(1/))? and v = \/8’“5—755]) log(2r/0).

B
1— m
Lol < [lya — Prgyalls < <1+oe>g|!v\|§ (2.15)

This result showcases much stronger concentration of measure than the result of Balzano et
al. [25]. The main difference is in the definitions of « and (3, which in their work have worse
dependence on the coherence parameter ;(v). These improvements play out into our stronger
sample complexity guarantee for the matrix and tensor completion algorithms.

The proof of this theorem is based on three deviation bounds controlling the effect of subsam-
pling. We state and prove these lemmas before turning to the proof of Theorem 2.8.
Lemma 2.9. With the same notations as in Theorem 2.8, with probability > 1 — 24:

m m
(1 =)= [lvl < Jluall} < (1 +a)—[lvll3 (2.16)

Proof. The proof is an application of Bernstein’s inequality (Theorem A.1). Let 2(¢) denote the
ith coordinate in the sample and let X; = vgy ;) — 3[lv[[5 so that 357", X; = [juall5 — % [[v]|3. The
variance and absolute bounds are:

m n
m m
ot =) EXP< 3wl < —flolflol, R =max||X| < o]l
i=1

=1

Bernstein’s Inequality then shows that:

—¢2
P >t | <2exp ( — ) )
( ) 2ol (Z o + 3¢

Setting t = o||v||3 and using the definition y(v) = d||v||Z,/||v||3 this bound becomes:
]P <

And plugging in the definition of « ensures that the probability is upper bounded by 20.

m

S

=1

m

>

=1

2

> O‘E‘|UH§> < 2exp (Z,u(v)(_l + Oz/S))
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Lemma 2.10. With the same notation as Theorem 2.8 and provided that m > 4u(v)log(1/6),
with probability at least 1 — 9.

mrp(U)
d d

|U&vall3 < B [v]3 (2.17)

Proof. The proof is an application of the vector version of Bernstein’s inequality (Proposi-
tion A.2. Let u; € R" denote the ith row of an orthonormal basis for U and set X; = uq)vo)-
Since v € U+, the Xs are centered so we are left to compute the variance:

m d

m mru(U)
SCEIX = %Y fulP < T ol = v
i=1 j=1

Applying Proposition A.2 and re-arranging, we have that with probability at least 1 — §:

[UAvallz < VV 4+ /AV10(1/8) = [ E vl (1 +2/10g(1/9))

As long as:

t = v/4V log(1/6) < V(max | X; )™

Since max; || X;|| < ||v||soy/71/d and using the incoherence assumption on v this condition

translates to m > 4u(v) log(1/§). Squaring the above inequality proves the lemma.
Lemma 2.11 ([25]). Let § > 0 and m > $ru(U)log(2r/5). Then

d

I(USUQ) Iz < a=m

(2.18)
with probability at least 1 — § provided that vy < 1. In particular U} Uq, is invertible.

Proof of Theorem 2.8. We begin with the decomposition:
lye = Pugyellz = llvallz — vaUa(UsUa) ™' Udva. (2.19)

Next, let W Wq = (ULUq) ™!, which is valid provided that UL Uy, is invertible (which we will
subsequently ensure). We have:

vhUa(USUa) " Uvg = [[WoUGvall3 < [[Wal3llUSvall3 = 1[(UqUa) ~ I|US vall3,
which means that:
[vall3 — (USUQ) UG vall® < llye — Pugyalls < llvalls. (2.20)

The theorem now follows immediately from Lemmas 2.9, 2.10, and 2.11, which control he

quantities in the above inequalities.
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Another significant component of the proof involves controlling the incoherence of various sub-
spaces that appear throughout the execution of the algorithm. The following lemmas control
precisely these quantities.

Lemma 2.12. Let Uy C R™ Uy C R™,...Ur C R"T be subspaces of dimension at most d, let
Wy C Uy have dimension d'. Define S = span({@leugt) 4 ). Then:

(@) p(Wy) < 420y,
(b) 1(S) < d" 1L, w(Uy).

Proof. For the first property, since W1 is a subspace of U1, Pw,e; = P, Puy€; 50 ||Punels <
|| P, €5]]3. The result now follows from the definition of incoherence.

For the second property, we instead compute the incoherence of:

S" = span ({®tT=1u(t)}u<t>eUtw>

which clearly contains S. Note that if {ugt)} is an orthonormal basis for U; (for each t), then the
outer product of all combinations of these vectors is a basis for S’. We now compute:

T
S = Alm ma Py (®1_1ex,)|]?
K(S) [T, dim(U;) ki€l breln] 175 (@il

T
o Hz:l i T (1) T 2
= =T 1. ... nax § <®t:1uit s D1 €y )

-----

=T . . a. ) .
[T;—; dim(U7) j=1 7 =1 t=1

Now, property (a) establishes that 1(S) < % 1(S') which is the desired result.

Theorem 2.8, Lemma 2.12, and some algebraic manipulations, yields the following corollary,
which we use in the analysis of the Algorithm 2:

Corollary 2.13. Suppose that U is a subspace of U and z, € U but x, ¢ U. Observe a set
of coordinates Q) C [d] of m entries sampled uniformly at random with replacement. If m >
32r g log?(2r/8) then with probability > 1 — 46, ||z — Pg,Tialla > 0. If 2, € U, then
conditioned on the fact that UL Uq, is invertible, ||x;q — Pg,,Tiall2 = 0 with probability 1.
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Proof. The second statement follows from the fact that if z; € U , then x;q € ﬁg, so the pro-
jection onto the orthogonal complement is identically zero. As for the first statement, we apply
Theorem 2.8, noting that the conditions on m are satisfied.

We now verify that the lower bound is strictly positive. By Lemma 2.12(a), we know that any
vector v in U has coherence (v) < 7o and similarly any subspace U C U has dim(0)u(U) <
rpo. Plugging in m into the definition «,~y, and using the previous facts, we see that « < 1/2
and v < 1/3. We are left with:

1 (m 3rup
o = Poyall 2 3 (5 - 57)

and the lower bound is strictly positive whenever 3r 15 < m. Plugging in the definition of 3, we

see that this relation is also satisfied, concluding the proof.

Proof of Corollary 2.2

Corollary 2.2 is considerably simpler to prove than Theorem 2.1, so we prove the former in its
entirety before proceeding to the latter. First notice that our estimates U for the column space is
always a subspace of the true column space, since we only ever add in fully observed vectors that
live in the column space. Also notice that we only resample the set {2 at most r + 1 times, since
the matrix is exactly rank r, and we only resample when we find a linearly independent column.
Thus with probability 1 — (r + 1)d, by application of Lemma 2.11 from the appendix, all of the
matrices Ug Ug are invertible.

When processing the ¢th column, one of two things can happen. Either x; lives in our current
estimate for the column space, in which case we know from the above corollary that with prob-
ability 1, ||z — Py,ril|?> = 0. This holds since we have already accounted for the probability
that UL Uq is not-invertible. When this happens we do not obtain additional samples and just
need to ensure that we reconstruct x;, which we will see below. If z; does not live in U, then
with probability > 1 — 44 the estimated projection is strictly positive (by Corollary 2.13), in
which case we fully observe the new direction x; and augment our subspace estimate. In fact,
this failure probability includes the event that Ul Uy, is not invertible.

Since X has rank at most r, this latter case can happen no more than r times, and via a union
bound, the failure probability is < 4rd + §. Here, the last factor of J ensures that the last
subsampled projection operator is well behaved. In other words, with probability > 1 — 47 — 4,
our estimate U at the end of the algorithm is exactly the column space of X.

The vectors that were not fully observed are recovered exactly as long as (UL Uq) ™! is invertible.
This follows from the fact that, if x; € U, we can write x; = U«; and we have:

&y = UULUQ) ' UL Ugay = Uy =
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We already accounted for the probability that these matrices are invertible. We showed above
that the total failure probability is at most 51§ when m > 32ru log?(2r/6), so by setting m >
32719 log® (1072 /§), the total failure probability is at most .

For the running time, per column, the dominating computational costs involve the projection Py
and the reconstruction procedure. The projection involves several matrix multiplications and the
inversion of a r X r matrix, which need not be recomputed on every iteration. Ignoring the matrix
inversion, this procedure takes at most O(mr) time per column, since the vector and the projector
are subsampled to m-dimensions, for a total running time of O(nmr). At most r times, we must
recompute (Ul Uq) ™!, which takes O(r*m), contributing a factor of O(r®m) to the total running

takes O(dr?) time.

Proof of Theorem 2.1

We now generalize the above proof to the tensor completion case and prove Theorem 2.1. We
first focus on the recovery of the tensor in total, expressing this in terms of failure probabilities in
the recursion. Then we inductively bound the failure probability of the entire algorithm. Finally,
we compute the total number of observations. For now, define 71 to be the failure probability of
recovering a 7-order tensor.

By Lemma 2.12, the subspace spanned by the mode-T tensors has incoherence at most "2, ~!

and rank at most r and each slice has incoherence at most rT_luoT’I. The subspace spanned by
the mode-T sub-tensors is based on the outer product of the subspaces { A®}7" /! so it is based on
the outer product of 7" — 1 subspaces, all with coherence bounded by /i, and dimension at most
7. This means that the subspace spanned by the mode-T" subtensors has incoherence r’ 2] ~!
and each slice is a 1-dimensional subspace of this r-dimensional subspace, so it has incoherence

that is a factor of r larger.

By the same argument as Corollary 2.13, we see that with mzy_, > 3277~ ul "' log?(2r /67_1)
the projection test succeeds in identifying informative subtensors (those not in our current basis)
with probability > 1 —44,_;. With a union bound over these 7 subtensors, the failure probability
becomes 7 < 4rdpr_y + dr_1, not counting the probability that we fail in recovering these
subtensors, which is r7p_;.

For each order 7' — 1 tensor that we have to recover, the subspace of interest has incoherence
at most 7 3 7=2 and with probability > 1 — 4rdr_, we correctly identify each informative
subtensor as long as mqp_y > 32r7 2" 210g?(2r /67_5). Again the failure probability is at

most 7r_1 < 4rdp_o + 0o + r7r_o.

To compute the total failure probability we proceed inductively. 71 = 0 since we completely
observe any one-mode tensor (vector). The recurrence relation is:

Ty = 47”(575_1 + 5t—1 + rT—1. (221)
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Which in words means that we complete r subtensors of order 7" — 1, r? tensors of order 7' — 2
and so on, observing 7 ~1 order 1 tensors (or vectors) in full. The total failure probability is
therefore bounded by:

T—1
T = Z 57"T7t(5t. (222)
t=1

The requirement on m; is:
my > 32r' pf log?(2r' /5,).

To achieve risk at most &, one can set m,; > 3277 il log®(10rT/§), which concludes the proof
of the statistical guarantee for Algorithm 2.

We also compute the sample complexity inductively. Let 1y denote the number of samples
needed to complete an order 7’ tensor. Then 7; = n; and:

Ny = NgMy_1 + TM—1

So that 77 is upper bounded as:

T T
nr < Zntmt_er_t < 32T (Z nt) rT_l,uOT_l logz(lOrT/cS)
t=1 t=1

when we set m; as above.

The running time is computed in a similar way to the matrix case. To complete an order 7T’
tensor, we must complete r order 7" — 1 tensors, and additional process each subtensor. As in the
matrix case, processing all of the np subtensors requires mp_;7 time per column to do all vector
and matrix multiplications, O(r*my_,) time to do the matrix inversions, and O(r> [/, ;) to
perform Gram-Schmidt. If the running time to complete a order ¢ tensors is denote «;, then the
running time is inductively defined as:

t—1
Ke = Tki—1 + O (ntmtlr +r3my_y +r? H nl> , (2.23)

i=1

with k1 = n;. Using the fact that m; = O(r") and that 7 < min,{n,}, the total running time can
be bounded by:

T T—1
O (Z ngr® 4+ Tr2tT 4 2 H nt>
t=1 t=1

where we are treating iy as a constant and ignoring logarithmic factors.
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2.4.2 Proof of Theorem 2.3

The proof of the necessary condition in Theorem 2.3 is based on a standard reduction-to-testing
style argument. For ease of notation, we suppress the dependence on the parameters to R*, Q,
and X. The high-level architecture is to consider a subset X’ C X of inputs and lower bound the
Bayes risk. Specifically, if we fix a prior 7 supported on X,

R = inf inf maxPo.,[f(2, Xo) # X]

> inf inf Bqgoy xon [P £ Xq) # X
> nf inf By x [Py f(2, Xq) # X

> inf min Exr[Pr[f (2, Xa) # X]]

The first step is a standard one in information theoretic lower bounds and follows from the fact
that the maximum dominates any expectation over the same set. The second step is referred to
as Yao’s Minimax Principle in the analysis of randomized algorithms, which says that one need
only consider deterministic algorithms if the input is randomized. It is easily verified by the fact
that in the second line, the inner expression is linear in ¢, so it is minimized on the boundary
of the simplex, which is a deterministic choice of 2. We use Py to emphasize that f can be
randomized, although it will suffice to consider deterministic f.

Let 7 be the uniform distribution over X’ C X’. The minimax risk is lower bounded by:

R >1 - maxEx|{X' € X|Xf = Xo}|™

since if there is more than one matrix in X" that agrees with X on €2, the best any estimator could
do is guess. Notice that since X is drawn uniformly, this is equivalent to considering an f that
deterministically picks one matrix X’ € X” that agrees with the observations.

To upper bound the second term, define Uy = {X € X" : [{X' € X'|X{, = Xq}| = 1} which is
the set of matrices that are uniquely identified by the entries €. Also set N = X’ \ Ug, which is
the set of matrices that are not uniquely identified by (2. We may write:

1 U

. -1
g B X' € 1 = Xo)| ™ < g+ 8

Since if X € Nq, there are at least two matrices that agree on those observations, so the best
estimator is correct with probability no more than 1/2.

We now turn to constructing a set X”’. Set [ = %. The left singular vectors uq, . .., u,_; will be
constanton {1,...,l}, {l+1,...,2[} etc. while the first  — 1 right singular vectors vy, ..., v,_1
will be the first » — 1 standard basis elements. We are left with:
r—14d
d—(r—1)l=d- — 2 dey,
T Mo
coordinates where we will attempt to hide the last left singular vector. Here we defined ¢; =
1-— %, which is not a constant, but will ease the presentation. For u,, we pick [ coordinates

30



out of the dc; remaining, pick a sign for each and let u, have constant magnitude on those
coordinates. There are 2/ (dfl) poss